A New Laser Ultrasonic Inspection Method for the Detection of Multiple Delamination Defects

Materials (Basel). 2021 May 6;14(9):2424. doi: 10.3390/ma14092424.

Abstract

Delamination is one of the most common types of defects for carbon fiber reinforced plastic (CFRP) composites. The application of laser techniques to detect delamination faces difficulties with ultrasonic wave excitation because of its low thermal conductivity. Much of the research that can be found in the literature has only focused on the detection of a single delamination. In this study, aluminum foil was pasted onto the surface of the composite so that it was vulnerable to ablation and could acquire a usable signal. Using a fully noncontact system with laser excitation at a fixed point and a scanning laser sensor, the effects of different aluminum foil sizes and shapes on the wavefield were studied for the composites; we decided to use a rectangle with 3 mm length and 5 mm width for laser excitation experiments. Wavefield characteristics of the composite plates were analyzed with single- and multi-layered Teflon inserts. Taking the time window for standard ultrasonic testing as a reference, the algorithms for localized wave energy with appropriate time windows are presented for the detection of single and multiple defects. The appropriate time window is meaningful for identifying each delamination defect. The algorithm performs well in delamination detection of the composites with one or multiple Teflon inserts.

Keywords: delamination; guided wave; laser; local wavenumber; localized wave energy; wavefield.