Synthetic, Mesomorphic, and DFT Investigations of New Nematogenic Polar Naphthyl Benzoate Ester Derivatives

Materials (Basel). 2021 May 16;14(10):2587. doi: 10.3390/ma14102587.

Abstract

Four new non-symmetrical derivatives based on central naphthalene moiety, 4-((4-(alkoxy)phenyl) diazenyl)naphthalen-1-yl 4-substitutedbenzoate (In/x), were prepared, and their properties were investigated experimentally and theoretically. The synthesized materials bear two wing groups: an alkoxy chain of differing proportionate length (n = 6 and 16 carbons) and one terminal attached to a polar group, X. Their molecular structures were elucidated via elemental analyses and FT-IR and NMR spectroscopy. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) were carried out to evaluate their mesomorphic properties. The results of the experimental investigations revealed that all the synthesized analogues possess only an enantiotropic nematic (N) mesophase with a high thermal stability and broad range. Density functional theory (DFT) calculations were in accordance with the experimental investigations and revealed that all prepared materials are to be linear and planar. Moreover, the rigidity of the molecule increased when an extra fused ring was inserted into the center of the structural shape, so its thermal and geometrical parameters were affected. Energy gap predictions confirmed that the I16/c derivative is more reactive than other compounds.

Keywords: DFT; azo/ester; fused ring; liquid crystals materials; mesomorphic properties; optimized structures; thermal parameters.