Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: A review

Mater Sci Eng C Mater Biol Appl. 2012 Oct 1;32(7):1727-1758. doi: 10.1016/j.msec.2012.05.010. Epub 2012 May 16.

Abstract

Application of hydroxyapatite (HA) in orthopedic implants suffers from its low fracture toughness and poor wear resistance. Carbon nanotube (CNT), with its high stiffness and mechanical strength, is an attractive reinforcement for HA to surmount these issues. The last 7-8years have seen a number of studies to explore the efficiency of CNT reinforcement in strengthening HA, in the form of composites and coatings. Impressive improvement in the fracture toughness and wear resistance of HA with CNT reinforcement and beneficial effects on biocompatibility has sparked further research interests, for possible clinical applications. This review article aims to cover a wide span of this exciting and expanding research arena - from detailed technical discussions on HA-CNT system, their processing techniques and the influence of CNT dispersion in the HA matrix. Role of CNT in the improvement of mechanical properties and tribological behavior of the composite has been discussed in light of different processing techniques. Other important issues related to HA-CNT system, e.g., phase transformation and crystallinity of HA and HA-CNT interfacial bonding has been stressed upon. Biocompatibility of HA-CNT composites, which is extremely important for its intended orthopedic application, has been summarized with an overview of the present status. An in-depth analysis of the information presented in this review facilitates a better understanding of the current state of HA-CNT research and allows framing guidelines toward future research direction for its successful clinical application.

Keywords: Biocompatibility; Carbon nanotubes; Fracture toughness; Hydroxyapatite; Orthopedics; Wear.

Publication types

  • Review