Identify glioma recurrence and treatment effects with triple-tracer PET/CT

BMC Med Imaging. 2021 May 31;21(1):92. doi: 10.1186/s12880-021-00624-1.

Abstract

Background: Differential diagnosis of tumour recurrence (TuR) from treatment effects (TrE), mostly induced by radiotherapy and chemotherapy, is still difficult by using conventional computed tomography (CT) or magnetic resonance (MR) imaging. We have investigated the diagnostic performance of PET/CT with 3 tracers, 13N-NH3, 18F-FDOPA, and 18F-FDG, to identify TuR and TrE in glioma patients following treatment.

Methods: Forty-three patients with MR-suspected recurrent glioma were included. The maximum and mean standardized uptake values (SUVmax and SUVmean) of the lesion and the lesion-to-normal grey-matter cortex uptake (L/G) ratio were obtained from each tracer PET/CT. TuR or TrE was determined by histopathology or clinical MR follow-up for at least 6 months.

Results: In this cohort, 34 patients were confirmed to have TuR, and 9 patients met the diagnostic standard of TrE. The SUVmax and SUVmean of 13N-NH3 and 18F-FDOPA PET/CT at TuR lesions were significantly higher compared with normal brain tissue (13N-NH3 0.696 ± 0.558, 0.625 ± 0.507 vs 0.486 ± 0.413; 18F-FDOPA 0.455 ± 0.518, 0.415 ± 0.477 vs 0.194 ± 0.203; both P < 0.01), but there was no significant difference in 18F-FDG (6.918 ± 3.190, 6.016 ± 2.807 vs 6.356 ± 3.104, P = 0.290 and 0.493). L/G ratios of 13N-NH3 and 18F-FDOPA were significantly higher in TuR than in TrE group (13N-NH3, 1.573 ± 0.099 vs 1.025 ± 0.128, P = 0.008; 18F-FDOPA, 2.729 ± 0.131 vs 1.514 ± 0.141, P < 0.001). The sensitivity, specificity and AUC (area under the curve) by ROC (receiver operating characteristic) analysis were 57.7%, 100% and 0.803, for 13N-NH3; 84.6%, 100% and 0.938, for 18F-FDOPA; and 80.8%, 100%, and 0.952, for the combination, respectively.

Conclusion: Our results suggest that although multiple tracer PET/CT may improve differential diagnosis efficacy, for glioma TuR from TrE, 18F-FDOPA PET-CT is the most reliable. The combination of 18F-FDOPA and 13N-NH3 does not increase the diagnostic efficiency, while 18F-FDG is not worthy for differential diagnosis of glioma TuR and TrE.

Keywords: 13N-NH3; 18F-FDG; 18F-FDOPA; Glioma recurrence; Treatment effects.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Ammonia / pharmacokinetics
  • Brain / diagnostic imaging
  • Brain / metabolism
  • Brain Neoplasms / diagnostic imaging*
  • Brain Neoplasms / metabolism
  • Brain Neoplasms / therapy
  • Dihydroxyphenylalanine / analogs & derivatives
  • Dihydroxyphenylalanine / pharmacokinetics
  • Disease Progression
  • Female
  • Fluorine Radioisotopes / pharmacokinetics
  • Fluorodeoxyglucose F18 / pharmacokinetics
  • Glioma / diagnostic imaging*
  • Glioma / metabolism
  • Glioma / therapy
  • Humans
  • Male
  • Middle Aged
  • Neoplasm Recurrence, Local / diagnostic imaging*
  • Neoplasm Recurrence, Local / metabolism
  • Nitrogen Radioisotopes / pharmacokinetics
  • Positron Emission Tomography Computed Tomography / methods*
  • ROC Curve
  • Radiopharmaceuticals / pharmacokinetics*
  • Sensitivity and Specificity
  • Treatment Outcome
  • Young Adult

Substances

  • Fluorine Radioisotopes
  • Nitrogen Radioisotopes
  • Radiopharmaceuticals
  • Fluorodeoxyglucose F18
  • fluorodopa F 18
  • Dihydroxyphenylalanine
  • Ammonia