Adaptation and transformation planning for resilient social-ecological system in coastal wetland using spatial-temporal simulation

Sci Total Environ. 2021 Oct 1:789:148007. doi: 10.1016/j.scitotenv.2021.148007. Epub 2021 May 24.

Abstract

Coastal wetlands comprise unique ecological systems such as tidal flats and wetlands coexisting with marine and terrestrial ecosystems. The Songdo wetlands in South Korea are adjacent to the Yellow Sea, and were once composed mainly of tidal flats, but as urbanization progressed, their social-ecological system changed. The social system created by land reclamation and development reduced the migratory bird population and the tidal flat area, damaging the ecological system. This study suggests adaptation and transformation plans by analyzing land use change and fragmentation of the Songdo wetlands using spatial-temporal simulation. System dynamics and GIS were used in the process of analyzing land use change through spatial-temporal simulation, and FRAGSTATS was used in the analysis of wetland fragmentation. Scenario 1 (current state maintenance) presents adaptation plans to increase the connectivity of wetland patches, since fragmentation has not progressed to the extent of wetland system collapse. In Scenario 2 (development acceleration), since the wetland system causes serious fragmentation in terms of area and shape, we propose transformation plans such as disaster response to the collapse of the ecological system and qualitative improvement of wildlife habitat. In Scenario 3 (wetland restoration), proposes transformation plans from the network and modularization perspective in response to quantitative restoration and morphological fragmentation of wetlands. The adaptation and transformation plans presented in this study can provide prediction results suitable for various contingencies such as the current state, acceleration of development, and wetlands restoration. This study is also meaningful in that it proposes plans from the perspective of resilience by predicting the change of the Songdo area, which is scheduled to be developed by 2030.

Keywords: CLUE-S model; Environmental planning; Land use change; Landscape fragmentation; Spatial-temporal simulation; System dynamics model.

MeSH terms

  • Animals
  • Birds
  • China
  • Conservation of Natural Resources
  • Ecosystem*
  • Republic of Korea
  • Wetlands*