Spatial variations in stomatal traits and their coordination with leaf traits in Quercus variabilis across Eastern Asia

Sci Total Environ. 2021 Oct 1:789:147757. doi: 10.1016/j.scitotenv.2021.147757. Epub 2021 May 15.

Abstract

The stomatal traits influence ecosystem carbon-water fluxes and play essential roles that enable plants to adapt to changing environmental conditions. However, how stomatal traits vary along a large climate gradient and whether stomatal traits coordinated with other leaf functional traits in response to environmental changes remain unclear. We investigated the stomatal density (SD), stomatal size (SS), and leaf traits (leaf area (LA), leaf mass per area (LMA), and vein density (VD)) of 44 in situ Quercus variabilis populations across Eastern Asia (24 to 51.8°N, 99 to 137°E) and 15 populations grown in a common garden, and evaluated their relationships with environmental factors. Stepwise multiple regression showed that the SD was significantly associated with mean annual precipitation (MAP), LMA, and VD, and the SS with latitude, mean annual temperature (MAT), mean monthly solar radiation (MMSR), and VD. The SD was positively correlated with the LMA, while the SS was negatively correlated with the VD. The SD and LMA increased with decreasing precipitation, which indicated that they may coordinate to commonly enhance plant resistance against drought. The SS decreased; however, the VD increased with temperature. This implied that plants might further reduce their SS by increasing VD limitations under global warming. In the common garden, plants exhibited a higher SD and VD and lower SS and LA compared to those in the field; however, no relation between the stomatal and leaf traits was observed. Our results suggested that stomatal traits have high environmental plasticity and are highly coordinated with other leaf functional traits in response to environmental changes. Nevertheless, this coordination may have been formed through long-term adaptations, rather than over short time spans.

Keywords: Climate change; Eastern Asia; Leaf functional traits; Phenotypic plasticity; Quercus variabilis; Stomatal traits.

MeSH terms

  • Asia, Eastern
  • Climate
  • Ecosystem
  • Plant Leaves
  • Quercus*