Interaction generalisation and demographic feedbacks drive the resilience of plant-insect networks to extinctions

J Anim Ecol. 2021 Sep;90(9):2109-2121. doi: 10.1111/1365-2656.13547. Epub 2021 Jun 16.

Abstract

Understanding the processes driving ecological resilience, that is the extent to which systems retain their structure while absorbing perturbations, is a central challenge for theoretical and applied ecologists. Plant-insect assemblages are well-suited for the study of ecological resilience as they are species-rich and encompass a variety of ecological interactions that correspond to essential ecosystem functions. Mechanisms affecting community response to perturbations depend on both the natural history and structure of ecological interactions. Natural history attributes of the interspecific interactions, for example whether they are mutualistic or antagonistic, may affect the ecological resilience by controlling the demographic feedbacks driving ecological dynamics at the community level. Interaction generalisation may also affect resilience, by defining opportunities for interaction rewiring, the extent to which species are able to switch interactions in fluctuating environments. These natural history attributes may also interact with network structure to affect ecological resilience. Using adaptive network models, we investigated the resilience of plant-pollinator and plant-herbivore networks to species loss. We specifically investigated how fundamental natural history differences between these systems, namely the demographic consequences of the interaction and their level of generalisation-mediating rewiring opportunities-affect the resilience of dynamic ecological networks to extinctions. We also create a general benchmark for the effect of network structure on resilience simulating extinctions on theoretical networks with controlled structures. When network structure was static, pollination networks were less resilient than herbivory networks; this is related to their high levels of nestedness and the reciprocally positive feedbacks that define mutualisms, which made co-extinction cascades more likely and longer in plant-pollinator assemblages. When considering interaction rewiring, the high generalisation and the structure of pollination networks boosted their resilience to extinctions, which approached those of herbivory networks. Simulation results using theoretical networks suggested that the empirical structure of herbivory networks may protect them from collapse. Elucidating the ecological and evolutionary processes driving interaction rewiring is key to understanding the resilience of plant-insect assemblages. Accounting for rewiring requires ecologists to combine natural history with network models that incorporate feedbacks between species abundances, traits and interactions. This combination will elucidate how perturbations propagate at community level, reshaping biodiversity structure and ecosystem functions.

Compreender os processos que governam a resiliência dos sistemas ecológicos, i.e. o quanto sistemas ecológicos conservam sua estrutura enquanto absorvem perturbações, é um desafio central para ecólogos teóricos e aplicados. Comunidades de insetos e plantas são bons modelos para o estudo da resiliência ecológica pois são ricos em espécies, representando uma grande diversidade de interações ecológicas que correspondem a serviços ecossistêmicos essenciais. Os mecanismos que afetam a resposta de comunidades ecológicas a perturbações dependem tanto da história natural quanto da estrutura das interações ecológicas. A história natural de interações interespecíficas, e.g. se a interação é mutualística ou antagonística, pode afetar a resiliência do sistema ao controlar as retroalimentações demográficas que governam a dinâmica ecológica no nível da comunidade. Generalismo nas interações também pode afetar resiliência ao definir as oportunidades de rewiring de interações, i.e. o quanto espécies são capazes de mudar interações em ambientes instáveis. Atributos da história natural das interações podem também interagir com a estrutura de redes ecológicas de forma a influenciar a resiliência de sistemas ecológicos. Usando modelos de redes adaptativas, investigamos a resiliência de redes polinizador-planta e herbívoro-planta à perda de espécies. Especificamente, investigamos como diferenças fundamentais na história natural dos dois sistemas, isto é, as consequências demográficas da interação e seu grau de generalização - que mediam as oportunidades de rewiring - afetam a resiliência de redes ecológicas dinâmicas a extinções. Também criamos um referencial teórico e abrangente para o efeito da estrutura das redes em sua resiliência, simulando extinções em redes teóricas com estruturas controladas. Quando a estrutura das redes foi considerada estática, redes de polinização foram menos resilientes do que redes de herbivoria; o que está associado aos maiores níveis de aninhamento e aos efeitos demográficos positivos e recíprocos que definem mutualismos, aumentando a probabilidade e o comprimento das cascatas de extinção em redes polinizador-planta. Ao incorporar rewiring de interações, a alta generalização e a estrutura das redes de polinização impulsionou sua resiliência a extinções, que se aproximou da resiliência de redes de herbivoria. Os resultados das simulações com redes teóricas sugerem que estrutura de redes de herbivoria protegem esses sistemas do colapso. Compreender quais processos ecológicos e evolutivos governam o rewiring de interações é chave se queremos prever a resiliência de sistemas inseto-planta. Para incorporar rewiring de interações, será necessário combinar conhecimento sobre história natural com modelos de rede que incorporem a retroalimentação entre abundâncias, atributos e interações das espécies envolvidas. Essa combinação elucidará como perturbações se propagam no nível de comunidades ecológicas, reconfigurando a estrutura da biodiversidade e suas funções ecossistêmicas.

Keywords: antagonism; cascade length; co-evolutionary networks; forbidden links; interaction rewire; modularity; mutualistic network; robustness.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Demography
  • Ecosystem*
  • Feedback
  • Insecta
  • Plants*
  • Pollination