Non-diarrheagenic and diarrheagenic E. coli carrying supplementary virulence genes (SVG) are associated with diarrhea in children from Mexico

Microb Pathog. 2021 Aug:157:104994. doi: 10.1016/j.micpath.2021.104994. Epub 2021 May 24.

Abstract

Escherichia coli strains, including diarrheagenic E. coli (DEC), are among the most important causes of childhood diarrhea in developing countries. Since these strains also colonize healthy children, additional factors leading to diarrhea remains to be discovered. We therefore conducted a comprehensive study to investigate if supplementary virulence genes (SVG) carried by DEC strains and non-DEC strains, contribute to diarrhea in Mexican children. E. coli strains were isolated from n = 317 children between 6 and 12 years, n = 114 with diarrhea and n = 203 asymptomatic children from Northwestern Mexico, PCR was used to identify SVG, then virulence score and cytotoxic assay in HT-29 cells were performed to evaluate virulence of E. coli strains. DEC prevalence was 18.6% and its presence was significantly associated with diarrhea cases. aEPEC, tEAEC, ETEC, DAEC, aEAEC, tEPEC, and EIEC pathotypes were identified. aEPEC strains were significantly associated with asymptomatic children, whereas ETEC was only identified in children with diarrhea. E. coli strains carrying colonization-related SVG and/or proteolysis-related SVG were significantly associated with diarrhea. DEC strains were associated to diarrhea if strains carried SVG ehaC, kps, nleB, and/or espC. Virulence score was significantly higher in E. coli from diarrhea cases than asymptomatic. In addition, DEC strains carrying SVG+ were more virulent, followed by non-DEC SVG+ strains, and correlated with the cytotoxicity assay. Nearly 50% of DEC strains were MDR, and ~10% were XDR. In conclusion the findings of this work provide evidence that the presence of E. coli strains (regardless if strains are DEC or non-DEC) with SVG were associated with diarrhea in Mexican children.

Keywords: Children; DEC; Diarrhea; Escherichia coli; Supplementary virulence genes.

MeSH terms

  • Child
  • Diarrhea / epidemiology
  • Escherichia coli Infections* / epidemiology
  • Escherichia coli* / genetics
  • Humans
  • Mexico / epidemiology
  • Virulence