Supersoft Elastic Bottlebrush Microspheres with Stimuli-Responsive Color-Changing Properties in Brine

Langmuir. 2021 Jun 8;37(22):6744-6753. doi: 10.1021/acs.langmuir.1c00751. Epub 2021 May 26.

Abstract

Solvent-free supersoft elastomer is highly desirable for building photonic structures with significant stimuli-responsive color changes. We report supersoft elastic porous microspheres with vivid structural colors obtained via self-assembly of amphiphilic bottlebrush block copolymers at the water/oil interface templated by ordered water-in-oil-in-water double emulsions. The porous structure is composed of cross-linked bottlebrush polydimethylsiloxane (PDMS) as the supersoft elastic skeleton and bottlebrush poly(ethylene oxide) (PEO) as the internal responsive layer. The obtained microspheres show large reversible volume changes through well-controlled dehydration or hydration of PEO in response to salt ions in an aqueous environment. As a result, full-spectrum colors are obtained dependent on different salt concentrations. In-situ observation of color reflection of a microsphere indicates a gradual structural transition from the outside to the inside corresponding to migration of water molecules and salt ions. Moreover, rod-like bottlebrush PEO exhibits an anion-induced salting-out behavior different from that of random coil polymers. The significantly responsive behaviors of bottlebrush block copolymer (BBCP) assemblies in the presence of salt ions primarily rely on the supersoft elastic skeleton of the porous structure, providing a facile route to the creation of stimuli-responsive photonic materials by low-cost self-assembly methods.