Co-remediation of PTEs contaminated soil in mining area by heat modified sawdust and herb

Chemosphere. 2021 Oct:281:130908. doi: 10.1016/j.chemosphere.2021.130908. Epub 2021 May 18.

Abstract

Exploring efficient remediation technologies to remediate potentially toxic element (PTE) in soil around the mining area has become a trendy research topic. This study conducted material composed of sawdust ash (SA) and sawdust biochar (SB) with mass ratio of SA:SB = 1:2 in combination with Medicago sativa L. and Festuca arundinacea to remediate soil contaminated by zinc (Zn), cadmium (Cd), and arsenic (As) in a mining area. The result showed that the removal rates of Zn, Cd, and As were the highest under the treatment of Festuca arundinacea combined with 5% material with values of 22.15%, 22.05%, and 12.47%, respectively. Festuca arundinacea had the most potent ability to absorb and tolerate composite PTEs, and the co-remediation process could remarkably improve soil enzyme environment and microbial community diversity. The distribution of PTEs in plant subcellular showed that the accumulation of Zn, Cd, and As in the cell wall of Festuca arundinacea root was significantly increased by adding 2% materials. The concentrations of Zn, Cd, and As in the cell wall were 4486.25, 33.59, and 124.15 mg/kg, respectively. The combination of 2% material and Festuca arundinacea could effectively remove PTEs in soil and enhance the detoxification ability of the plant, thus effectively improving the soil environment and remediating PTEs pollution. This study provided insights into the remediation of PTE-contaminated soil in mining area by combining materials and plants.

Keywords: Co-remediation; Heat modified sawdust; Herb; PTE; Soil.

MeSH terms

  • Festuca*
  • Hot Temperature
  • Mining
  • Soil
  • Soil Pollutants* / analysis

Substances

  • Soil
  • Soil Pollutants