[Migration and Environmental Effects of Heavy Metals in the Pyrolysis of Municipal Sludge]

Huan Jing Ke Xue. 2021 Jun 8;42(6):2966-2974. doi: 10.13227/j.hjkx.202009078.
[Article in Chinese]

Abstract

Migration characteristics of the heavy metals Fe, Zn, Mn, and Ni during the preparation of biochar from municipal sludge were studied, and the optimal pyrolysis temperature for the preparation of biochar was determined based on potential environmental risks. Four heavy metals (Fe, Zn, Mn, and Ni) with high total contents in the biochar were selected to determine their species and content changes under different pyrolysis temperatures using the BCR extraction method. An environmental risk assessment for sludge-based biochar was also carried out using the potential ecological risk index (PERI) and risk assessment code (RAC). The results showed that the volatility of the four metals is ranked as follows:Zn>Mn>Fe>Ni. The distribution and transformation of the four metal species were different, but their migration paths shared similar characteristics. In the pyrolysis stage at low temperatures (<500℃), unstable fractions gradually changed into more stable species; under high temperatures (>500℃), some of the oxidizable and residual fractions were broken, which transformed into reducible fractions, and other fractions escaped into the atmosphere. In the environmental risk assessment, biochar prepared under high pyrolysis temperatures (>500℃) showed lower environmental risks, with the best outcomes at 500℃.

Keywords: environmental effects; heavy metals; potential risk index; risk assessment code(RAC); sludge-based biochar.

Publication types

  • English Abstract