Surfactant Adsorption to Different Fluid Interfaces

Langmuir. 2021 Jun 8;37(22):6722-6727. doi: 10.1021/acs.langmuir.1c00668. Epub 2021 May 24.

Abstract

Surfactant adsorption to fluid interfaces is ubiquitous in biological systems, industrial applications, and scientific fields. Herein, we unravel the impact of the hydrophobic phase (air and oil) and the role of oil polarity on the adsorption of surfactants to fluid interfaces. We investigated the adsorption of anionic (sodium dodecyl sulfate), cationic (dodecyltrimethylammonium bromide), and non-ionic (polyoxyethylene-(23)-monododecyl ether) surfactants at different interfaces, including air and oils, with a wide range of polarities. The surfactant-induced interfacial tension decrease, called the interfacial pressure, correlates linearly with the initial interfacial tension of the clean oil-water interface and describes the experimental results of over 30 studies from the literature. The higher interfacial competition of surfactant and polar oil molecules caused the number of adsorbed molecules at the interface to drop. Further, we found that the critical micelle concentration of surfactants in water correlates to the solubility of the oil molecules in water. Hence, the nature of the oil affects the adsorption behavior and equilibrium state of the surfactant at fluid interfaces. These results broaden our understanding and enable better predictability of the interactions of surfactants with hydrophobic phases, which is essential for emulsion, foam, and capsule formation, pharmaceutical commodities, cosmetics, and many food products.

Publication types

  • Research Support, Non-U.S. Gov't