Insights into the mechanism of hydrogen peroxide activation with biochar produced from anaerobically digested residues at different pyrolysis temperatures for the degradation of BTEXS

Sci Total Environ. 2021 Sep 20:788:147718. doi: 10.1016/j.scitotenv.2021.147718. Epub 2021 May 13.

Abstract

The disposal of large amounts of biogas residue from anaerobically digested waste is a burden on environment protection. Porous biochars (BCs) were synthesized from biogas residue at three pyrolysis temperatures (300 °C, 550 °C, and 800 °C) and used to catalyze H2O2 for the degradation of benzene, toluene, ethylbenzene, xylene isomers (ortho, para, and meta), and styrene (BTEXS) to develop a new use for biogas residues. The prepared BCs were characterized through scanning electron microscopy, Brunauer-Emmett-Teller method, Fourier transform infrared spectrometry, and X-ray photoelectron spectroscopy. Results showed that BC800/H2O2 had the highest BTEXS degradation performance over 6 h. The degradation kinetic data were most consistent with the pseudo-second-order model. The different catalytic effect of the three BCs pyrolyzed at different temperatures were attributed to the dominant active sites (C-O/C-OH/C=C/C=O groups, pyridinic N, and graphitic N) that induced the production of reactive oxygen species (ROS). ROS-quenching experiments indicated that the degradation of BTEXS by BC300/H2O2, BC550/H2O2, and BC800/H2O2 involved ∙OH, ∙O2-, and 1O2. ∙OH was the dominant ROS in BC300/H2O2 and BC550/H2O2, and 1O2 was the dominant ROS in BC800/H2O2. Our findings provided new insight into the different catalytic mechanisms for BC production at different pyrolysis temperatures and demonstrated that a porous BC catalyst with high utilization value could be prepared from biogas residue and could hold considerable potential for application in BTEXS treatment in the future.

Keywords: BTEXS; Biochar; Biogas residue; Pyrolysis temperature; Reactive oxygen species; Surface feature.

MeSH terms

  • Charcoal
  • Hydrogen Peroxide*
  • Pyrolysis*
  • Temperature

Substances

  • biochar
  • Charcoal
  • Hydrogen Peroxide