Elevated carbon dioxide reduces a common soybean leaf endophyte

Glob Chang Biol. 2021 Sep;27(17):4154-4168. doi: 10.1111/gcb.15716. Epub 2021 Jun 24.

Abstract

Free-air CO2 enrichment (FACE) experiments have elucidated how climate change affects plant physiology and production. However, we lack a predictive understanding of how climate change alters interactions between plants and endophytes, critical microbial mediators of plant physiology and ecology. We leveraged the SoyFACE facility to examine how elevated [CO2 ] affected soybean (Glycine max) leaf endophyte communities in the field. Endophyte community composition changed under elevated [CO2 ], including a decrease in the abundance of a common endophyte, Methylobacterium sp. Moreover, Methylobacterium abundance was negatively correlated with co-occurring fungal endophytes. We then assessed how Methylobacterium affected the growth of co-occurring endophytic fungi in vitro. Methylobacterium antagonized most co-occurring fungal endophytes in vitro, particularly when it was more established in culture before fungal introduction. Variation in fungal response to Methylobacterium within a single fungal operational taxonomic unit (OTU) was comparable to inter-OTU variation. Finally, fungi isolated from elevated vs. ambient [CO2 ] plots differed in colony growth and response to Methylobacterium, suggesting that increasing [CO2 ] may affect fungal traits and interactions within the microbiome. By combining in situ and in vitro studies, we show that elevated [CO2 ] decreases the abundance of a common bacterial endophyte that interacts strongly with co-occurring fungal endophytes. We suggest that endophyte responses to global climate change will have important but largely unexplored implications for both agricultural and natural systems.

Keywords: Methylobacterium; FACE (free-air CO2 enrichment); Glycine max (soybean); endophytes; fungi; in vitro assays; microbiome.

MeSH terms

  • Carbon Dioxide*
  • Endophytes*
  • Fungi
  • Glycine max
  • Plant Leaves

Substances

  • Carbon Dioxide