A comprehensive dataset of microRNA misexpression phenotypes in the Drosophila eye

Data Brief. 2021 Apr 3:36:107037. doi: 10.1016/j.dib.2021.107037. eCollection 2021 Jun.

Abstract

microRNAs (miRNAs) are a broad class of ~22 nucleotide regulatory RNA, which collectively have broad effects on the transcriptome and are involved in diverse biology, from development and adult physiology, and from homeostasis to disease and pathology. We investigated the effects of systematically expressing microRNAs (miRNAs) during the development of the Drosophila compound eye using the GMR-Gal4 driver. The objective was to determine what fraction of miRNAs were capable of inducing aberrant morphology that was easily and reproducibly scored by visual inspection under a dissecting microscope. We assayed multiple independent insertions of 166 miRNA transgenes (536 lines), comprising solo miRNAs, miRNA operons and individual constituent miRNAs from operons. We find a substantial number reproducibly altered normal eye development and a smaller number induced lethality in most or all progeny. We provide the comprehensive results of this screen, documenting numerous miRNA transgenes that interfered with normal eye development when activated using GMR-Gal4. These data can be mined by the Drosophila community to query the in vivo effects of any individual miRNA of interest in the eye, as well as utilized as a foundation for more complex genetic perturbations that involve miRNA misexpression in the eye.

Keywords: Drosophila; Eye; Genetic screen; microRNA.