Morphological alterations of the pyramidal and stellate cells of the visual cortex in schizophrenia

Exp Ther Med. 2021 Jul;22(1):669. doi: 10.3892/etm.2021.10101. Epub 2021 Apr 22.

Abstract

Schizophrenia is a severe brain disorder characterized by certain types of delusion, hallucination and thought disorder. Studies have revealed impaired synaptic plasticity and reduced gamma-aminobutyric acid levels of the visual cortex in patients with schizophrenia. While previous work established a critical role for interneurons and cortical connectivity in the generation of hallucinations, the present study set out to examine the morphology of pyramidal cells and interneurons from layers 3 and 4 in the primary visual cortex from schizophrenic brains and to identify any dendritic and spinal alterations in comparison to normal control brains. The morphological and morphometric changes of the pyramidal cells and the interneurons of the visual cortices of 10 brains obtained from patients with schizophrenia, in comparison to 10 age-matched controls, were studied using the Golgi method and 3D neuronal reconstruction techniques. Analysis using the Golgi impregnation technique revealed a significant loss of distal dendritic segments, tortuous branches and varicosities and an overall restriction of the dendritic field in the brains of schizophrenic patients in both pyramidal cells and in aspiny interneurons. The present results may explain certain clinical phenomena associated with the visual cortex usually encountered in schizophrenia.

Keywords: 3D neuronal reconstruction; Golgi method; aspiny stellate neurons; pyramidal neurons; schizophrenia; visual cortex.

Grants and funding

Funding: No funding was received.