Identifying background microbiomes in an evidence recovery laboratory: A preliminary study

Sci Justice. 2021 May;61(3):280-290. doi: 10.1016/j.scijus.2021.01.001. Epub 2021 Jan 7.

Abstract

16S rRNA profiling of bacterial communities may have forensic utility in the identification or association of individuals involved with criminal activities. Microbial profiling of evidence may, in the future, be performed within environments currently utilised for human DNA recovery, such as a forensic biology laboratory. It would be important to establish the background microbiome of such an environment to determine the potential presence of human or environmental microbial signatures to assist forensic scientists in the appropriate interpretation of target microbial communities. This study sampled various surfaces of an Evidence Recovery Laboratory (ERL) on three occasions including (a) before a monthly deep-clean, (b) immediately following the deep-clean, and (c) immediately after the laboratory's use by a single participant for the purposes of routine item examinations. Microbial profiles were also generated for the involved participant and researcher for comparison purposes. Additionally, human nuclear DNA was profiled for each of the samples collected, using standard forensic profiling techniques, to provide a prospective link to the presence or absence of a background microbial signature within the ERL after its use. Taxonomic distributions across ERL samples revealed no consistent signature of any of the items sampled over time, however, major phyla noted within all ERL samples across the three timepoints were consistent with those found in human skin microbiomes. PCoA plots based on the Unweighted Unifrac metric revealed some clustering between participant microbial reference samples and surfaces of the ERL after use, suggesting that despite a lack of direct contact, and adherence to standard operating procedures (SOPs) suitable for human DNA recovery, microbiomes may be deposited into a forensic setting over time. The reference samples collected from the involved participant and researcher generated full STR profiles. Human DNA was observed to varying degrees in samples taken from the ERL across each of the sampling timepoints. There was no correlation observed between samples that contained or did not contain detectable quantities of human nuclear DNA and microbial profile outputs.

Keywords: Evidence recovery; Forensic identification; Human microbiome; Microbial profiling; Transfer.

MeSH terms

  • Bacteria
  • Humans
  • Microbiota* / genetics
  • Prospective Studies
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA

Substances

  • RNA, Ribosomal, 16S