Assessing potential ecosystem service dynamics driven by urbanization in the Yangtze River Economic Belt, China

J Environ Manage. 2021 Aug 15:292:112734. doi: 10.1016/j.jenvman.2021.112734. Epub 2021 May 10.

Abstract

Ecosystem services (ESs) link natural and social processes and play an important role in sustaining ecological security, human well-being, and sustainable development. However, uncertainties in future socioeconomic land use drivers may result in very different land use dynamics and consequences for land-based ESs. In this study, land use transitions in the Yangtze River Economic Belt (YREB) were simulated in the short term (2018-2030), medium term (2030-2040), and long term (2040-2050) using the future land use simulation (FLUS) model based on the local shared socioeconomic pathways (SSPs). According to the projected land use types, six ESs were quantified and assessed regarding how they would evolve under particular land use changes. The results of land use simulations showed that the main features were urban sprawl and a decrease in cropland. In particular, intensive urban sprawl occurred around existing urban areas, and a large amount of cultivated land was converted into urban land. In the YREB, urban land will increase from 88,441 km2 in 2018 to 156,173-192,900 km2 in 2050, while the cropland area will decrease from 607,131 km2 in 2018 to 500,183-596,313 km2 in 2050. As a consequence of urban expansion, all ESs exhibited decreasing trends, except for several services under SSP1. Food production (FP), carbon storage (CS), water conservation (WC), soil retention (SR), air purification (AP), and habitat quality (HQ) will decline by 8.98-21.4%, 1.95-6.781%, 2.97-6.5%, 0.9-1.7%, 1.20-5.15%, and 6.11-12.86%, respectively. The ES integrative assessment indicated distinct provincial differences. Developed eastern provinces have higher populations and urbanization; however, these traits result in greater ES losses. We suggest that future land management should control the blind expansion of urban land and enhance the protection of cropland and natural habitats to reduce ES losses.

Keywords: Ecosystem services; FLUS model; Scenario simulations; Shared socioeconomic pathways (SSPs); Urbanization.

MeSH terms

  • China
  • Conservation of Natural Resources
  • Ecosystem*
  • Humans
  • Rivers
  • Urbanization*