Interleukin-34 Reprograms Glycolytic and Osteoclastic Rheumatoid Arthritis Macrophages via Syndecan 1 and Macrophage Colony-Stimulating Factor Receptor

Arthritis Rheumatol. 2021 Nov;73(11):2003-2014. doi: 10.1002/art.41792. Epub 2021 Sep 22.

Abstract

Objective: In rheumatoid arthritis (RA), elevated serum interleukin-34 (IL-34) levels are linked with increased disease severity. IL-34 binds to 2 receptors, macrophage colony-stimulating factor receptor (M-CSFR) and syndecan 1, which are coexpressed in RA macrophages. Expression of both IL-34 and syndecan 1 is strikingly elevated in the RA synovium, yet their mechanisms of action remain undefined. This study was undertaken to investigate the mechanism of action of IL-34 in RA.

Methods: To characterize the significance of IL-34 in immunometabolism, its mechanism of action was elucidated in joint macrophages, fibroblasts, and T effector cells using RA and preclinical models.

Results: Intriguingly, syndecan 1 activated IL-34-induced M-CSFR phosphorylation and reprogrammed RA naive cells into distinctive CD14+CD86+GLUT1+ M34 macrophages that expressed elevated levels of IL-1β, CXCL8, and CCL2. In murine M34 macrophages, the inflammatory phenotype was accompanied by potentiated glycolytic activity, exhibited by transcriptional up-regulation of GLUT1, c-Myc, and hypoxia-inducible factor 1α (HIF-1α) and amplified pyruvate and l-lactate secretion. Local expression of IL-34 provoked arthritis by expanding the glycolytic F4/80-positive, inducible nitric oxide synthase (iNOS)-positive macrophage population, which in turn attracted fibroblasts and polarized Th1/Th17 cells. The cross-talk between murine M34 macrophages and Th1/Th17 cells broadened the inflammatory and metabolic phenotypes, resulting in the expansion of IL-34 pathogenicity. Consequently, IL-34-instigated joint inflammation was alleviated in RAG-/- mice compared to wild-type mice. Syndecan 1 deficiency attenuated IL-34-induced arthritis by interfering with joint glycolytic M34 macrophage and osteoclast remodeling. Similarly, inhibition of glycolysis by 2-deoxy-d-glucose reversed the joint swelling and metabolic rewiring triggered by IL-34 via HIF-1α and c-Myc induction.

Conclusion: IL-34 is a novel endogenous factor that remodels hypermetabolic M34 macrophages and facilitates their cross-regulation with T effector cells to advance inflammatory bone destruction in RA.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Arthritis, Rheumatoid / metabolism*
  • Glycolysis / physiology
  • Inflammation / metabolism
  • Interleukins / metabolism*
  • Macrophages / metabolism*
  • Mice
  • Osteoclasts / metabolism
  • Phosphorylation
  • Receptor, Macrophage Colony-Stimulating Factor / metabolism*
  • Syndecan-1 / metabolism*
  • Synovial Membrane / metabolism

Substances

  • Interleukins
  • Syndecan-1
  • interleukin-34, mouse
  • Receptor, Macrophage Colony-Stimulating Factor