Freestream velocity-profile measurement in a large-scale, high-enthalpy reflected-shock tunnel

Exp Fluids. 2021;62(5):118. doi: 10.1007/s00348-021-03207-6. Epub 2021 May 5.

Abstract

Abstract: We apply Krypton Tagging Velocimetry (KTV) to measure velocity profiles in the freestream of a large, national-scale high-enthalpy facility, the T5 Reflected-Shock Tunnel at Caltech. The KTV scheme utilizes two-photon excitation at 216.67 nm with a pulsed dye laser, followed by re-excitation at 769.45 nm with a continuous laser diode. Results from a nine-shot experimental campaign are presented where N 2 and air gas mixtures are doped with krypton, denoted as 99% N 2 /1% Kr, and 75% N 2 /20% O 2 /5% Kr, respectively. Flow conditions were varied through much of the T5 parameter space (reservoir enthalpy h R 5 - 16 MJ/kg). We compare our experimental freestream velocity-profile measurements to reacting, Navier-Stokes nozzle calculations with success, to within the uncertainty of the experiment. Then, we discuss some of the limitations of the present measurement technique, including quenching effects and flow luminosity; and, we present an uncertainty estimate in the freestream velocity computations that arise from the experimentally derived inputs to the code.