Ultrasensitive ratiometric electrochemiluminescence for detecting atxA mRNA using luminol-encapsulated liposome as effectively amplified signal labels

Biosens Bioelectron. 2021 Aug 15:186:113263. doi: 10.1016/j.bios.2021.113263. Epub 2021 May 1.

Abstract

It is an advantageous way to quickly identify the toxicity of Bacillus anthracis (B. anthracis) by detecting the transcription product of the atxA gene. Herein, a novel ultrasensitive ratiometric electrochemiluminescence (ECL) biosensor with competitive mechanism and double amplified signal ways was proposed for detecting the atxA mRNA. The K2S2O8 was used as cathodic emitter and silver metal-organic gels (AgMOG) was used as ECL enhancer. The AgMOG could accelerate the electro-catalytic reduction of S2O82- to SO4˙-, which reacted with dissolved oxygen, resulting in strong cathodic ECL. Meanwhile, luminol was encapsulated in liposome as anodic amplified signal labels and the luminol anion radical also reacted with dissolved oxygen to create the anodic ECL emission. We immobilized luminol-encapsulated liposomes on the surface of AgMOG through the hybridization of DNA and mRNA. This would provide a competitive mechanism involving dissolved oxygen between K2S2O8 and luminol. Benefiting from the competitive mechanism and amplified signal ways, this ratiometric biosensor achieved a wide linear relationship range from 10 to 300 fM with a low limit of detection (8.13 fM). Considering the accessible operation, favorable performance, and high universality of this strategy, this work may be used to analyze other mRNAs of bacteria.

Keywords: Dissolved oxygen; Electrochemiluminescence; Liposome; Ratiometric biosensor; Silver metal-organic gel.