Novel 4-(piperazin-1-yl)quinolin-2(1H)-one bearing thiazoles with antiproliferative activity through VEGFR-2-TK inhibition

Bioorg Med Chem. 2021 Jun 15:40:116168. doi: 10.1016/j.bmc.2021.116168. Epub 2021 Apr 22.

Abstract

A new series of 2-(4-(2-oxo-1,2-dihydroquinolin-4-yl)piperazin-1-yl)-N-(4-phenylthiazol-2-yl)acetamide derivatives were synthesized and evaluated for anticancer activity. All target compounds showed anticancer activity higher than that of their 2-oxo-4-piperazinyl-1,2-dihydroquinolin-2(1H)-one precursors. Multidose testing of target compounds was performed against breast cancer T-47D cell line. Five compounds showed higher cytotoxic activity than Staurosporine. The dihalogenated derivative showed the best cytotoxic activity with IC50 2.73 ± 0.16 µM. In addition, the VEGFR-2 inhibitory activity of all synthetic compounds was evaluated. Two compounds of 6-fluoro-4-(piperazin-1-yl)quinolin-2(1H)-ones showed inhibitory activity comparable to sorafenib with IC50 46.83 ± 2.4, 51.09 ± 2.6 and 51.41 ± 2.3 nM, respectively. The cell cycle analysis of two compounds namely, 2-(4-(6-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)piperazin-1-yl)-N-(4-phenylthiazol-2-yl)acetamide and N-(4-(4-chlorophenyl)thiazol-2-yl)-2-(4-(2-oxo-1-phenyl-1,2-dihydroquinolin-4-yl)piperazin-1-yl)acetamide revealed that the arrest of cell cycle occurred at S phase. In apoptosis assay, the same two compounds were able to induce significant levels of early and late apoptosis. In a similar manner to Sorafenib, docking of target compounds with VEGFR-2 protein 4ASD showed HB with Cys919 in hinge region of enzyme and HB with both Glu885 and Asp1046 in gate area. Using SwissADME, all target compounds were predicted to be highly absorbed from gastrointestinal tract with no BBB permeability. It is clear that the two compounds are promising antiproliferative candidates that require further optimization.

Keywords: 4-Phenylthiazole; 4-Piperazinylquinolin‐2(1H)-one; Angiogenesis; Breast cancer; VEGFR‐2 inhibitors.

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • Humans
  • Models, Molecular
  • Molecular Structure
  • Protein Kinase Inhibitors / chemical synthesis
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Structure-Activity Relationship
  • Thiazoles / chemistry
  • Thiazoles / pharmacology*
  • Vascular Endothelial Growth Factor Receptor-2 / antagonists & inhibitors*
  • Vascular Endothelial Growth Factor Receptor-2 / metabolism

Substances

  • Antineoplastic Agents
  • Protein Kinase Inhibitors
  • Thiazoles
  • KDR protein, human
  • Vascular Endothelial Growth Factor Receptor-2