Groundwater pollution assessment in a coastal aquifer in Cape Coast, Ghana

Heliyon. 2021 Apr 17;7(4):e06751. doi: 10.1016/j.heliyon.2021.e06751. eCollection 2021 Apr.

Abstract

This work presents an assessment of the chemico-physical and microbial quality of water samples from hand-dug wells in the shallow aquifer of three communities neighbouring the University of Cape Coast, Ghana. Sanitary risk inspection was undertaken at each well location and the physical parameters including electrical conductivity, pH, Dissolved Oxygen (DO) and etc. were measured in situ via probes. Microbial groundwater quality was analysed using membrane filtration method. Samples of water were analysed for the pollution indicator anions including chloride and nitrate. In addition, the possible persistence of bacteria in groundwater environments in the absence of predator organisms were studied and results fitted with exponential, second-order polynomial and linear distribution models. Sanitary risk inspection and microbial quality results indicate that all the wells were at risk and polluted with total coliforms from on-site sanitation. Twenty-five percent (7 out of 28) of the wells recorded DO concentration within acceptable limits of drinking water standards (> 5 mg/L). Average chloride concentration, 360.5 mg/L (range: 46 mg/L to 844 mg/L) and average electrical conductivity value of 1.5 mS/cm (range: 213 μS/cm to 2.7 mS/cm) were both higher than WHO recommended limits. Acidic conditions (pH < 6.5) were observed in water samples, indicating mineralisation of the aquifer. The high EC values and chloride content in groundwater were attributable to dry atmospheric aerosol deposition and possible mineral dissolution in the aquifer. Bacteria re-growth experiment results indicate that second-order polynomial distribution best describes bacteria inactivation rates in the absence of antagonist predators in our work. Extrapolation of time for complete inactivation of bacteria under groundwater environment ranged from 0.1 to 4 years indicating bacteria can persist in aquifers for long period of time. It was concluded that all the wells are at risk of pollution and polluted with faecal matter and atmospheric aerosols.

Keywords: Bacteria persistence; Cape Coast; Coastal aquifer; Escherichia coli; Pollution; Sea aerosol deposition; Sea water intrusion.

Publication types

  • Case Reports