Caffeic Acid, Quercetin and 5-Fluorocytidine-Functionalized Au-Fe3O4 Nanoheterodimers for X-ray-Triggered Drug Delivery in Breast Tumor Spheroids

Nanomaterials (Basel). 2021 Apr 29;11(5):1167. doi: 10.3390/nano11051167.

Abstract

Au-Fe3O4 nanoheterodimers (NHD) were functionalized with the natural and synthetic anticancer drugs caffeic acid (CA), quercetin (Q) and 5-fluorocytidine (5FC). Their X-radiation dose-enhancing potential and chemotherapeutic efficacy for bimodal cancer therapy were investigated by designing multicellular tumor spheroids (MCTS) to in vitro avascular tumor models. MCTS were grown from the breast cancer cell lines MCF-7, MDA-MB-231, and MCF-10A. The MCF-7, MDA-MB-231 and MCF-10A MCTS were incubated with NHD-CA, NHD-Q, or NHD-5FC and then exposed to fractionated X-radiation comprising either a single 10 Gy dose, 2 daily single 5 Gy doses or 5 daily single 2 Gy doses. The NHD-CA, NHD-Q, and NHD-5FC affected the growth of X-ray irradiated and non-irradiated MCTS in a different manner. The impact of the NHDs on the glycolytic metabolism due to oxygen deprivation inside MCTS was assessed by measuring lactate secretion and glucose uptake by the MCTS. The NHD-CA and NHD-Q were found to act as X-radiation dose agents in MCF-7 MCTS and MDA-MB-231 MCTS and served as radioprotector in MCF-10A MCTS. X-ray triggered release of CA and Q inhibited lactate secretion and thereupon disturbed glycolytic reprogramming, whereas 5FC exerted their cytotoxic effects on both, healthy and tumor cells, after their release into the cytosol.

Keywords: Au-Fe3O4 nanoheterodimers; X-ray-triggered drug delivery; chemotherapy; multicellular tumor spheroid; radiotherapy.