Hydrogel Based on Tricarboxi-Cellulose and Poly(Vinyl Alcohol) Used as Biosorbent for Cobalt Ions Retention

Polymers (Basel). 2021 Apr 29;13(9):1444. doi: 10.3390/polym13091444.

Abstract

A biomaterial based on poly(vinyl alcohol) reticulated with tricarboxi-cellulose obtained by TEMPO oxidation (OxC25) was used as a new biosorbent for Co(II) ions retention from aqueous solutions. The biosorption process of Co(II) ions was studied while mainly considering the operational factors that can influence it (i.e., biosorbent concentration, pH of the aqueous media, temperature and contact time of the phases). The maximum adsorption capacity was 181.82 mg/g, with the biosorption well fitted by the Langmuir model. The kinetic modeling of the biosorption process was based on certain models: Lagergreen (pseudo first order model), Ho (pseudo second order model), Elovich (heterogeneous biosorbent model), Webber-Morris (intraparticle diffusion model) and McKay (film diffusion model). The corresponding kinetic model suggests that this biosorption process followed a pseudo-second order kinetic model and was developed in two controlled steps beginning with film diffusion and followed by intraparticles diffusion.

Keywords: Co(II) ion; biosorbent; hybrid cellulose hydrogel; kinetic modeling.