Effects of cholesterol on chlorzoxazone translocation across POPC bilayer

J Mol Model. 2021 May 2;27(5):146. doi: 10.1007/s00894-021-04777-2.

Abstract

Cholesterol plays a crucial role in modulating the physicochemical properties of membranes, thus influencing the membrane transport of drugs. In this paper, the effects caused by cholesterol on the membrane transport of chlorzoxazone (CZX), a centrally acting muscle relaxant drug, were probed through molecular dynamics simulations. POPC was selected as the model lipid, and three different cholesterol concentrations (0%, 20%, and 50% CHOL) were considered. The outcomes reveal that the area per lipid of POPC decreases and the order parameter increases with enhanced concentration of CHOL. CZX prefers to localize at the interface between the headgroup region and the hydrophobic tail region of POPC, and the main energy barrier occurs in the hydrophobic region. The impact of CHOL on the free energy profile is correlated with concentration: low concentration facilitates CZX permeation, while high concentration hinders CZX permeation. Our findings coincide with experimental results, enhancing the mechanism understanding of how drug molecules are transported through membranes in the presence of CHOL. • The effects caused by cholesterol (CHOL) on the membrane transport of chlorzoxazone (CZX) were studied. • Low CHOL concentration facilitates CZX permeation, while high concentration hinders CZX permeation. • Our findings improve the mechanism understanding of CHOL effects on CZX translocation across membrane.

Keywords: Chlorzoxazone; Cholesterol; Molecular dynamics; POPC bilayer; Potential of mean force.