Investigation of Photonic-Crystal-Structured p-GaN Nanorods Fabricated by Polystyrene Nanosphere Lithography Method to Improve the Light Extraction Efficiency of InGaN/GaN Green Light-Emitting Diodes

Materials (Basel). 2021 Apr 25;14(9):2200. doi: 10.3390/ma14092200.

Abstract

We fabricated the photonic-crystal-structured p-GaN (PC-structured p-GaN) nanorods using the modified polystyrene nanosphere (PS NS) lithography method for InGaN/GaN green light-emitting diodes (LEDs) to enhance the light extraction efficiency (LEE). A modified PS NS lithography method including two-times spin-coating processes and the post-spin-coating heating treatment was used to obtain a self-assembly close-packed PS NS array of monolayer as a mask and then a partially dry etching process was applied to PS NS, SiO2, and p-GaN to form PC-structured p-GaN nanorods on the InGaN/GaN green LEDs. The light output intensity and LEE of InGaN/GaN green LEDs with the PC-structured p-GaN nanorods depend on the period, diameter, and height of PC-structured p-GaN nanorods. RSoft FullWAVE software based on the three-dimension finite-difference time-domain (FDTD) algorithm was used to calculate the LEE of InGaN/GaN green LEDs with PC-structured p-GaN nanorods of the varied period, diameter, and height. The optimal period, diameter, and height of PC-structured p-GaN nanorods are 150, 350, and 110 nm. The InGaN/GaN green LEDs with optimal PC-structured p-GaN nanorods exhibit an enhancement of 41% of emission intensity under the driving current of 20 mA as compared to conventional LED.

Keywords: InGaN/GaN green light-emitting diodes (LEDs); light extraction efficiency (LEE); photonic crystal (PC); spin coating method.