Direct Measurement of Sedimentation Coefficient Distributions in Multimodal Nanoparticle Mixtures

Nanomaterials (Basel). 2021 Apr 17;11(4):1027. doi: 10.3390/nano11041027.

Abstract

Differential centrifugal sedimentation (DCS) is based on physical separation of nanoparticles in a centrifugal field prior to their analysis. It is suitable for resolving particle populations, which only slightly differ in size or density. Agglomeration presents a common problem in many natural and engineered processes. Reliable data on the agglomeration state are also crucial for hazard and risk assessment of nanomaterials and for grouping and read-across of nanoforms. Agglomeration results in polydisperse mixtures of nanoparticle clusters with multimodal distributions in size, density, and shape. These key parameters affect the sedimentation coefficient, which is the actual physical quantity measured in DCS, although the method is better known for particle sizing. The conversion into a particle size distribution is, however, based on the assumption of spherical shapes. The latter disregards the influence of the actual shape on the sedimentation rate. Sizes obtained in this way refer to equivalent diameters of spheres that sediment at the same velocity. This problem can be circumvented by focusing on the sedimentation coefficient distribution of complex nanoparticle mixtures. Knowledge of the latter is essential to implement and optimize preparative centrifugal routines, enabling precise and efficient sorting of complex nanoparticle mixtures. The determination of sedimentation coefficient distributions by DCS is demonstrated based on supracolloidal assemblies, which are often referred to as "colloidal molecules". The DCS results are compared with sedimentation coefficients obtained from hydrodynamic bead-shell modeling. Furthermore, the practical implementation of the analytical findings into preparative centrifugal separations is explored.

Keywords: analytical centrifugation; classification of nanoparticles; colloidal clusters; colloidal molecules; density gradient centrifugation; differential centrifugal sedimentation; disk centrifuge; nanoparticles; sedimentation; separation.