Relationship between the TC of Smart Meta-Superconductor Bi(Pb)SrCaCuO and Inhomogeneous Phase Content

Nanomaterials (Basel). 2021 Apr 21;11(5):1061. doi: 10.3390/nano11051061.

Abstract

A smart meta-superconductor Bi(Pb)SrCaCuO (B(P)SCCO) may increase the critical transition temperature (TC) of B(P)SCCO by electroluminescence (EL) energy injection of inhomogeneous phases. However, the increase amplitude ΔTC (ΔTC=TC-TC,pure) of TC is relatively small. In this study, a smart meta-superconductor B(P)SCCO with different matrix sizes was designed. Three kinds of raw materials with different particle sizes were used, and different series of Y2O3:Sm3+, Y2O3, Y2O3:Eu3+, and Y2O3:Eu3++Ag-doped samples and pure B(P)SCCO were prepared. Results indicated that the TC of the Y2O3 or Y2O3:Sm3+ non-luminescent dopant doping sample is lower than that of pure B(P)SCCO. However, the TC of the Y2O3:Eu3++Ag or Y2O3:Eu3+ luminescent inhomogeneous phase doping sample is higher than that of pure B(P)SCCO. With the decrease of the raw material particle size from 30 to 5 μm, the particle size of the B(P)SCCO superconducting matrix in the prepared samples decreases, and the doping content of the Y2O3:Eu3++Ag or Y2O3:Eu3+ increases from 0.2% to 0.4%. Meanwhile, the increase of the inhomogeneous phase content enhances the ΔTC. When the particle size of raw material is 5 μm, the doping concentration of the luminescent inhomogeneous phase can be increased to 0.4%. At this time, the zero-resistance temperature and onset transition temperature of the Y2O3:Eu3++Ag doped sample are 4 and 6.3 K higher than those of pure B(P)SCCO, respectively.

Keywords: EL energy injection; critical transition temperature; increase amplitude ΔTC; inhomogeneous phase content; smart meta-superconductor B(P)SCCO.