Machine Learning Meets with Metal Organic Frameworks for Gas Storage and Separation

J Chem Inf Model. 2021 May 24;61(5):2131-2146. doi: 10.1021/acs.jcim.1c00191. Epub 2021 Apr 29.

Abstract

The acceleration in design of new metal organic frameworks (MOFs) has led scientists to focus on high-throughput computational screening (HTCS) methods to quickly assess the promises of these fascinating materials in various applications. HTCS studies provide a massive amount of structural property and performance data for MOFs, which need to be further analyzed. Recent implementation of machine learning (ML), which is another growing field in research, to HTCS of MOFs has been very fruitful not only for revealing the hidden structure-performance relationships of materials but also for understanding their performance trends in different applications, specifically for gas storage and separation. In this review, we highlight the current state of the art in ML-assisted computational screening of MOFs for gas storage and separation and address both the opportunities and challenges that are emerging in this new field by emphasizing how merging of ML and MOF simulations can be useful.

Keywords: Gas separation; Gas storage; High-throughput computational screening; Machine learning; Material design; Metal−organic frameworks; Modeling; Structure−performance relationships.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Machine Learning
  • Metal-Organic Frameworks*

Substances

  • Metal-Organic Frameworks