Keep it tight: a crucial role of bridging phosphine ligands in the design and optical properties of multinuclear coinage metal complexes

Dalton Trans. 2021 May 11;50(18):6003-6033. doi: 10.1039/d1dt00749a.

Abstract

Copper subgroup metal ions in the +1 oxidation state are classical candidates for aggregation via non-covalent metal-metal interactions, which are supported by a number of bridging ligands. The bridging phosphines, soft donors with a relatively labile coordination to coinage metals, serve as convenient and essential components of the ligand environment that allow for efficient self-assembly of discrete polynuclear aggregates. Simultaneously, accessible and rich modification of the organic spacer of such P-donors has been used to generate many fascinating structures with attractive photoluminescent behavior. In this work we consider the development of di- and polynuclear complexes of M(i) (M = Cu, Ag, Au) and their photophysical properties, focusing on the effect of phosphine bridging ligands, their flexibility and denticity.