Salinity is the major driver of the global eukaryotic community structure in fish-canning wastewater treatment plants

J Environ Manage. 2021 Jul 15:290:112623. doi: 10.1016/j.jenvman.2021.112623. Epub 2021 Apr 23.

Abstract

Fish-canning wastewater is characterized frequently by a high content of salt (NaCl), making its treatment particularly difficult; however, the knowledge of the effect of NaCl on eukaryotic communities is very limited. In the present study, the global diversity of eukaryotes in activated sludges (AS) from 4 different wastewater treatment plants (WWTPs) treating fish-canning effluents varying in salinity (0.47, 1.36, 1.72 and 12.76 g NaCl/L) was determined by sequencing partial 18S rRNA genes using Illumina MiSeq. A greater diversity than previously reported was observed in the AS community, which comprised 37 and 330 phylum-like and genera-like groups, respectively. In this sense, the more abundant genus-like groups (average relative abundance (RA) > 5%) were Adineta (6.80%), Lecane (16.80%), Dictyostelium (7.36%), Unclassified_Fungi7 (6.94%), Procryptobia (5.13) and Oocystis (5.07%). The eukaryotic communities shared a common core of 25 phylum-like clades (95% of total sequences); therefore, a narrow selection of the eukaryotic populations was found, despite the differences in the abiotic characteristics of fish-canning effluents and reactor operational conditions inflicted. The differences in NaCl concentration were the main factor that influenced the structure of the eukaryotic community, modulating the RAs of the different phylum-like clades of the common core. Higher levels of salt increased the RAs of Ascomycota, Chlorophyta, Choanoflagellata, Cryptophyta, Mollusca, Nematoda, Other Protists and Unclassified Fungi. Among the different eukaryotic genera here found, the RA of Oocystis (Chlorophyta) was intimately correlated to increasing NaCl concentrations and it is proposed as a bioindicator of the global eukaryotic community of fish-canning WWTPs.

Keywords: Eukarya community; Eukaryotic diversity; Fish-canning WWTP; Illumina sequencing; NaCl concentration.

MeSH terms

  • Animals
  • Dictyostelium*
  • Eukaryota / genetics
  • Salinity
  • Wastewater
  • Water Purification*

Substances

  • Waste Water