Design, synthesis and antitumor activity evaluation of Chrysamide B derivatives

Bioorg Chem. 2021 Jun:111:104828. doi: 10.1016/j.bioorg.2021.104828. Epub 2021 Apr 20.

Abstract

Marine natural products derived from special or extreme environment provide an important source for the development of anti-tumor drugs due to their special skeletons and functional groups. In this study, based on our previous work on the total synthesis and structure revision of the novel marine natural product Chrysamide B, a group of its derivatives were designed, synthesized, and subsequently of which the anti-cancer activity, structure-activity relationships and cellular mechanism were explored for the first time. Compared with Chrysamide B, better anti-cancer performance of some derivatives against five human cancer cell lines (SGC-7901, MGC-803, HepG2, HCT-116, MCF-7) was observed, especially for compound b-9 on MGC-803 and SGC-7901 cells with the IC 50 values of 7.88 ± 0.81 and 10.08 ± 1.08 μM, respectively. Subsequently, cellular mechanism study suggested that compound b-9 treatment could inhibit the cellular proliferation, reduce the migration and invasion ability of cells, and induce mitochondrial-dependent apoptosis in gastric cancer MGC-803 and SGC-7901 cells. Furthermore, the mitochondrial-dependent apoptosis induced by compound b-9 is related with the JAK2/STAT3/Bcl-2 signaling pathway. To conclude, our results offer a new structure for the discovery of anti-tumor lead compounds from marine natural products.

Keywords: Anti-cancer activity; Chrysamide B; JAK2/STAT3/Bcl-2 signaling pathway; Mitochondrial-dependent apoptosis; Structure-activity relationship.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amides / chemical synthesis
  • Amides / chemistry
  • Amides / pharmacology*
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects
  • Bridged Bicyclo Compounds / chemical synthesis
  • Bridged Bicyclo Compounds / chemistry
  • Bridged Bicyclo Compounds / pharmacology*
  • Cell Movement / drug effects
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Design*
  • Drug Screening Assays, Antitumor
  • Humans
  • Molecular Structure
  • Structure-Activity Relationship
  • Tumor Cells, Cultured

Substances

  • Amides
  • Antineoplastic Agents
  • Bridged Bicyclo Compounds
  • chrysamide B