Effective Blind Image Deblurring Using Matrix-Variable Optimization

IEEE Trans Image Process. 2021:30:4653-4666. doi: 10.1109/TIP.2021.3073856. Epub 2021 May 3.

Abstract

Blind image deblurring has been a challenging issue due to the unknown blur and computation problem. Recently, the matrix-variable optimization method successfully demonstrates its potential advantages in computation. This paper proposes an effective matrix-variable optimization method for blind image deblurring. Blur kernel matrix is exactly decomposed by a direct SVD technique. The blur kernel and original image are well estimated by minimizing a matrix-variable optimization problem with blur kernel constraints. A matrix-type alternative iterative algorithm is proposed to solve the matrix-variable optimization problem. Finally, experimental results show that the proposed blind image deblurring method is much superior to the state-of-the-art blind image deblurring algorithms in terms of image quality and computation time.