Stability of Boron Nitride Nanosphere Dispersions in the Presence of Polyelectrolytes

Langmuir. 2021 May 4;37(17):5399-5407. doi: 10.1021/acs.langmuir.1c00656. Epub 2021 Apr 20.

Abstract

Boron nitride nanospheres (BNNSs) were functionalized with polyelectrolytes. The effect of the polyelectrolyte dose and ionic strength on the charging and aggregation properties was investigated. At appropriate polyelectrolyte doses, charge neutralization occurred, whereas by increasing the dose, charge reversal was observed. The complete coating of the particles was indicated by a plateau in the ζ-potential values, which do not change significantly beyond the dose corresponding to the onset of such a plateau. The dispersions were highly aggregated around the charge neutralization point, while at lower or higher doses, the particles were stable. The salt-induced aggregation experiments revealed that the polyelectrolyte coatings contribute to the colloidal stability of the particles, namely, the critical coagulation concentrations deviated from the one determined for bare BNNSs. The presence of electrostatic and steric interparticle forces induced by the adsorbed polyelectrolyte chains was assumed. The obtained results confirm that the comprehensive investigation of the colloidal stability of BNNS particles is crucial to design stable or unstable dispersions and that polyelectrolytes are suitable agents for both stabilization and destabilization of BNNS dispersions, depending on the purpose of their application.

Publication types

  • Research Support, Non-U.S. Gov't