Quaternary Cu2FeSnS4/PVP/rGO Composite for Supercapacitor Applications

ACS Omega. 2021 Mar 30;6(14):9471-9481. doi: 10.1021/acsomega.0c06167. eCollection 2021 Apr 13.

Abstract

Electrochemical energy storage is a current research area to address energy challenges of the modern world. The Cu2FeSnS4/PVP/rGO-decorated nanocomposite using PVP as the surface ligand was explored in a simple one-step solvothermal route, for studying their electrochemical behavior by designing asymmetric hybrid supercapacitor devices. The full cell three-electrode arrangements delivered 748 C/g (62.36 mA h/g) at 5 mV/s employing CV and 328 F/g (45.55 mA h/g) at 0.5 A/g employing GCD for the Cu2FeSnS4/PVP/rGO electrode. The half-cell two-electrode device can endow with 73 W h/kg and 749 W/kg at 1 A/g energy and power density. Furthermore, two Cu2FeSnS4/PVP/rGO//AC asymmetric devices connected in series for illuminating a commercial red LED more than 1 min were explored. This work focuses the potential use of transition-metal chalcogenide composite and introduces a new material for designing high-performance supercapacitor applications.