Nuclear Factor Erythroid 2-related Factor 2 Knockout Suppresses the Development of Aggressive Colorectal Cancer Formation Induced by Azoxymethane/Dextran Sulfate Sodium-Treatment in Female Mice

J Cancer Prev. 2021 Mar 30;26(1):41-53. doi: 10.15430/JCP.2021.26.1.41.

Abstract

Colon tumors develop more frequently in male than in female. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays differential roles in the stage of tumorigenesis. The purpose of this study was to investigate the role of Nrf2 on colitis-associated tumorigenesis using Nrf2 knockout (KO) female mice. Azoxymethane (AOM) and dextran sulfate sodium (DSS)-treated wild-type (WT) and Nrf2 KO female mice were sacrificed at week 2 and 16 after AOM injection. Severity of colitis, tumor incidence, and levels of inflammatory mediators were evaluated in AOM/DSS-treated WT and Nrf2 KO mice. Furthermore, qRT-PCR, Western blot abnalysis, and ELISA were performed in colon tissues. At week 2, AOM/DSS-induced colon tissue damages were significantly greater in Nrf2 KO than in WT mice. At week 16, tumor numbers (> 2 mm size) were significantly lower in both the proximal and distal colon in Nrf2 KO compared to WT. The overall incidences of adenoma/cancer of the proximal colon and submucosal invasive cancer of the distal colon were reduced by Nrf2 KO. The mRNA and protein expression levels of NF-κB-related mediators (i.e., iNOS and COX-2) and Nrf2-related antioxidants (i.e., heme oxygenase-1 and glutamate-cysteine ligase catalytic subunit) were significantly lower in the Nrf2 KO than in WT mice. Interestingly, the protein level of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) was higher in AOM/DSS-treated Nrf2 KO than in WT mice. Our results support the oncogenic effect of Nrf2 in the later stage of carcinogenesis and upregulation of tumor suppressor 15-PGDH might contribute to the repression of colitis-associated tumorigenesis in Nrf2 KO female mice.

Keywords: 15-PGDH; AOM/DSS mouse model; Colitis-associated carcinogenesis; Colon cancer; Nrf2 knockout.