Graph-Cut RANSAC: Local Optimization on Spatially Coherent Structures

IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):4961-4974. doi: 10.1109/TPAMI.2021.3071812. Epub 2022 Aug 4.

Abstract

We propose Graph-Cut RANSAC, GC-RANSAC in short, a new robust geometric model estimation method where the local optimization step is formulated as energy minimization with binary labeling, applying the graph-cut algorithm to select inliers. The minimized energy reflects the assumption that geometric data often form spatially coherent structures - it includes both a unary component representing point-to-model residuals and a binary term promoting spatially coherent inlier-outlier labelling of neighboring points. The proposed local optimization step is conceptually simple, easy to implement, efficient with a globally optimal inlier selection given the model parameters. Graph-Cut RANSAC, equipped with "the bells and whistles" of USAC and MAGSAC++, was tested on a range of problems using a number of publicly available datasets for homography, 6D object pose, fundamental and essential matrix estimation. It is more geometrically accurate than state-of-the-art robust estimators, fails less often and runs faster or with speed similar to less accurate alternatives. The source code is available at https://github.com/danini/graph-cut-ransac.