Combining High Sensitivity and Dynamic Range: Wearable Thin-Film Composite Strain Sensors of Graphene, Ultrathin Palladium, and PEDOT:PSS

ACS Appl Nano Mater. 2019 Apr 26;2(4):2222-2229. doi: 10.1021/acsanm.9b00174. Epub 2019 Mar 25.

Abstract

Wearable mechanical sensors have the potential to transform healthcare by enabling patient monitoring outside of the clinic. A critical challenge in the development of mechanical-e.g., strain-sensors is the combination of sensitivity, dynamic range, and robustness. This work describes a highly sensitive and robust wearable strain sensor composed of three layered materials: graphene, an ultrathin film of palladium, and highly plasticized PEDOT:PSS. The role of the graphene is to provide a conductive, manipulable substrate for the deposition of palladium. When deposited at low nominal thicknesses (~8 nm) palladium forms a rough, granular film which is highly piezoresistive (i.e., the resistance increases with strain with high sensitivity). The dynamic range of these graphene/palladium films, however, is poor, and can only be extended to ~10% before failure. This fragility renders the films incompatible with wearable applications on stretchable substrates. To improve the working range of graphene/palladium strain sensors, a layer of highly plasticized PEDOT:PSS is used as a stretchable conductive binder. That is, the conductive polymer provides an alternative pathway for electrical conduction upon cracking of the palladium film and the graphene. The result was a strain sensor that possessed good sensitivity at low strains (0.001% engineering strain) but with a working range up to 86%. The piezoresistive performance can be optimized in a wearable device by sandwiching the conductive composite between a soft PDMS layer in contact with the skin and a harder layer at the air interface. When attached to the skin of the torso, the patch-like strain sensors were capable of detecting heartbeat (small strain) and respiration (large strain) simultaneously. This demonstration highlights the ability of the sensor to measure low and high strains in a single interpolated signal, which could be useful in monitoring, for example, obstructive sleep apnea with an unobtrusive device.

Keywords: Graphene; Metallic Nanoislands; Sleep Apnea; Strain Sensor; Wearable Sensor.