Design and characteristics of a Maxwell force-driven liquid lens

Opt Express. 2021 Mar 15;29(6):8323-8332. doi: 10.1364/OE.418630.

Abstract

Varifocal lenses (especially large-aperture lenses), which are formed by two immiscible liquids based on electrowetting and dielectrophoretic effects, are usually modulated by an external high-voltage power source, with respect to the volume of the liquid. Hence, a Maxwell force-driven liquid lens with large aperture and low threshold voltage is proposed. With the polarization effect, the accumulated negative charges on the surface of the polyvinyl chloride/dibutyl adipate gel near the anode results in the generation of Maxwell force and deformation with cosine wave. The effect of surface roughness on wettability is linear with the cosine of the contact angle, leading to a sharp reduction in the threshold voltage when the volume of liquid is increased. When the volume of the droplet increases to 80 μl, the threshold voltage is about 10 V. Hence, the aperture of polarization effect-driven liquid lenses can potentially reach the centimeter level. Moreover, when Maxwell force increases, the lens ranges from concave to convex lens, which holds great promise in rich application such as those in light-sheet microscopes and virtual reality systems.