Spectral sensor error analysis for measuring x-ray radiation drive using the DANTE diagnostic toward inertial confinement fusion experiments

Rev Sci Instrum. 2021 Mar 1;92(3):033505. doi: 10.1063/5.0035584.

Abstract

DANTE is a diagnostic used to measure the x-radiation drive produced by heating a high-Z cavity ("hohlraum") with high-powered laser beams. It records the spectrally and temporally resolved radiation flux at x-ray energies between 50 eV and 20 keV. Each sensor configuration on DANTE is composed of filters, mirrors, and x-ray diodes to define 18 different x-ray channels whose output is voltage as a function of time. The absolute flux is then determined from the photometric calibration of the sensor configuration and a spectral reconstructing algorithm. The reconstruction of the spectra vs time from the measured voltages and known response of each channel has presented challenges. We demonstrate a novel approach here for quantifying the error on the determined flux based on the channel sensor configuration and most commonly used reconstruction algorithm. In general, we find that the integrated spectral flux from a hohlraum can robustly be reconstructed (within ∼14%) using a traditional unfold approach with as few as ten channels due to the underlying assumption of a largely Planckian spectral intensity distribution.