The role of ozone combined with UVC/H2O2 process for the tertiary treatment of a real slaughterhouse wastewater

J Environ Manage. 2021 Jul 1:289:112480. doi: 10.1016/j.jenvman.2021.112480. Epub 2021 Apr 2.

Abstract

The main goal of this work is to evaluate the usage of ozone (O3) as a pre-treatment or simultaneously combined with UVC/H2O2 process for the polishing stage treatment of real bio-treated slaughterhouse wastewater. Two different treatment strategies were tested: i) pre-ozonation of the wastewater followed by an UVC/H2O2 process (two-step treatment); ii) simultaneous application of O3/UVC/H2O2 combined process (one-step treatment). For the two-step strategy, the pre-treatment with 30 mg O3/min for 10 min reduces significantly total suspended solids (TSS), turbidity and colour, reducing light filtering effects and increasing the efficiency of the following UVC/H2O2 process. In turn, the one-step treatment strategy (O3/UVC/H2O2) allows a more efficient use of injected O3 by reducing the amount of O3 required (from 273 to 189 mg O3/Leffluent) to achieve similar mineralization levels. The real bio-treated slaughterhouse wastewater treated by O3/UVC/H2O2 process achieved final colour values of 20 Pt/Co, TSS of 35 mg/L and COD of 61 mg O2/L, allowing its direct discharge into water compartments according to European Council Directive 91/271/EEC.

Keywords: Advanced oxidation processes; Ozonation; Process integration; Slaughterhouse wastewater.

MeSH terms

  • Abattoirs
  • Hydrogen Peroxide
  • Oxidation-Reduction
  • Ozone*
  • Wastewater
  • Water Pollutants, Chemical* / analysis
  • Water Purification*

Substances

  • Waste Water
  • Water Pollutants, Chemical
  • Ozone
  • Hydrogen Peroxide