Modeling and Computational Comparison of the Displacement Forces Exerted between the AFX Unibody Aortic Stent Graft and its Hybrid Combination with a Nitinol-based Proximal Aortic Cuff

Ann Vasc Surg. 2021 Jul:74:400-409. doi: 10.1016/j.avsg.2021.02.017. Epub 2021 Apr 2.

Abstract

Background: The bifurcated AFX (Endologix, Inc, Irvine, CA, USA) aortic stent-graft is the sole unibody endograft for the management of Abdominal Aortic Aneurysms (AAA). In order to improve the AFX central sealing and clinical efficacy in challenging cases, a replacement of the central chromium-cobaltium AFX extension with a Nitinol-based proximal aortic cuff has been suggested. Yet, comparative data regarding the hemodynamic performance of this design is missing. Aim of this study was to compare the displacement forces (DF) acting on the hybrid AFX-Endurant design, with the classic AFX and Endurant endografts, in angulated and non-angulated cases based on patient-specific Computational Fluid Dynamics (CFD) simulations.

Methods: 3D endograft models of 11 treated AAA cases were reconstructed from Computed Tomography Angiography (CTA) imaging data: 5 cases of AFX, 3 cases of the combination AFX-Endurant and 3 cases of the classic Endurant design. The DF on the main-body, the iliac limbs, and the entire stent-graft was calculated by processing the velocity and pressure fields generated by pulsatile CFD simulations.

Results: The range of total DF (acting on the whole endograft structure) in the AFX, hybrid AFX-Endurant and Endurant group was 2.5-5.2N, 2.0-5.9N and 1.9-2.9N respectively, with the maximum total DF being lower for Endurant. The DF on the main-body of the classic and hybrid AFX cases were higher than the right and left iliac limbs (2.5-4.9N vs. 0.6-5.3N and 0.7-3.6N respectively). Conversely, the DF on the main-body of the Endurant cases was comparable to the force exerted on the right and left limbs. When separating the cases with respect to their neck angulation, the DF on all endograft parts (main-body, limbs) and on the endograft as a whole were lower for the hybrid AFX-Endurant group compared to the classic AFX and Endurant groups, for cases with almost straight neck.

Conclusion: The off-label use of the hybrid AFX-Endurant stent-graft does not seem superior to the conventional AFX or Endurant endografts in angulated cases but was associated with lower DF than AFX or Endurant in non-angulated cases. The clinical value and utility of these findings remain to be elucidated.

Publication types

  • Comparative Study

MeSH terms

  • Alloys
  • Aortic Aneurysm, Abdominal / physiopathology*
  • Aortic Aneurysm, Abdominal / surgery
  • Blood Vessel Prosthesis*
  • Computed Tomography Angiography
  • Computer Simulation*
  • Humans
  • Models, Cardiovascular*
  • Prosthesis Design
  • Stents*
  • Vascular Grafting

Substances

  • Alloys
  • nitinol