Increased platelet thrombus formation under flow conditions in whole blood from polycythaemia vera patients

Blood Transfus. 2022 Mar;20(2):143-151. doi: 10.2450/2021.0456-20. Epub 2020 Mar 30.

Abstract

Background: Polycythaemia vera is a myeloproliferative neoplasm characterised by a high incidence of thrombosis. The contribution of platelets, key players in haemostasis, in this setting is still unclear. So far, the majority of studies have been focussed on specific platelet abnormalities but not on their actual capacity to form thrombi. The aim of this study was to characterise, ex vivo under flow conditions, the capacity of platelets from patients with polycythaemia vera to adhere to collagen and induce thrombus formation.

Materials and methods: Thirty-nine patients and 30 healthy controls were studied. Thrombus formation was induced by perfusing whole blood over a collagen-coated surface, in a parallel-plate flow chamber coupled to a fluorescent microscope. This dynamic system enables platelet adhesion and thrombus formation to be followed in real time and also allows measurements of the extent of the thrombus and platelet surface antigen expression. Laboratory data were analysed in the light of the patients' main haematological parameters and therapies.

Results: Platelet adhesion was significantly greater in patients than in control subjects. Patient thrombi were usually larger and more complex than those formed by control platelets. A significant positive correlation was found between platelet adhesion and both the haematocrit and red blood cell count. These parameters remained significantly correlated with platelet adhesion also after multivariable analysis adjusted for gender, age, therapy and JAK2V617F allele burden. Furthermore, subjects with a haematocrit >45% had significantly greater platelet adhesion than subjects with a haematocrit <45%.

Discussion: Our data indicate that increased platelet adhesion participates in the thrombotic diathesis of patients with polycythaemia vera, and that the haematocrit level can affect the adhesive and thrombus forming capacities of platelets.

MeSH terms

  • Blood Platelets / metabolism
  • Collagen / metabolism
  • Collagen / pharmacology
  • Humans
  • Platelet Adhesiveness
  • Polycythemia Vera* / complications
  • Polycythemia Vera* / metabolism
  • Thrombosis* / etiology

Substances

  • Collagen