Formation of Si-Rich Interfaces by Radiation-Induced Diffusion and Microsegregation in CrN/ZrN Nanolayer Coating

ACS Appl Mater Interfaces. 2021 Apr 14;13(14):16928-16938. doi: 10.1021/acsami.0c19451. Epub 2021 Apr 5.

Abstract

A combination of coating deposition and consequent ion implantation could be beneficial in wear-resistant antifriction surface design and modification. In the present paper, the effects of low-energy 60 keV Si-ion implantation on multinanolayered CrN/ZrN grown on a stainless-steel substrate have been investigated. Complementary experimental (X-ray diffraction, high-resolution transmission electron microscopy, energy-dispersive spectroscopy, secondary ion mass spectrometry) and theoretical (first-principles) methods have been employed to investigate the structure, phase, and composition under a 1 × 10-17 cm-2 irradiation dose. This study has revealed a moderate radiation-tolerance of the CrN/ZrN system, with a 26 nm bilayer period, where the effective ion range after irradiation was below 110 nm. Within the ion range, a decrease in composition homogeneity and structure crystallinity has been found. Si negative ions have been distributed asymmetrically with peak concentrations (10 and 6%) occupying the interfaces between the CrN and ZrN layers. First-principles investigations of the CrN/ZrN(001) heterostructures were carried out to validate the experimental results, which showed that the alignment of Si-rich interfaces closer to chromium layers is a consequence of the lower substitution energy of CrN rather than ZrN. Thus, strong Si-Cr bindings and difference in displacement energies of ZrN and CrN have been attributed as the main factors in Si-rich interface formation. The pin-on-ball tribological test results have exposed the enhancement in wear resistance and the friction coefficient of nanoscale coating via amorphous Si particles descending from interfacial areas and acting as a third-body.

Keywords: Si ion implantation; coefficient of friction; interfaces; microsegregation; substitution energy; wear resistance.