Clay-Filled Polyelectrolyte Complex Nanocoating for Flame-Retardant Polyurethane Foam

ACS Omega. 2021 Mar 18;6(12):8016-8020. doi: 10.1021/acsomega.0c05354. eCollection 2021 Mar 30.

Abstract

Polyurethane foam (PUF) is a highly flammable material typically used for cushioning in furniture and automobiles. A polyelectrolyte complex coating containing polyethylenimine, ammonium polyphosphate, and halloysite clay was applied to PUF using a two-step deposition process in an attempt to reduce its flammability. Electron microscopy confirms that this conformal thin film preserves the porous morphology of the foam and adds 20% to the foam's weight. Directly exposing coated foam to a butane torch flame yields a 73% residue after burning while keeping the internal structure of the foam intact. Cone calorimetry reveals a 52.5% reduction in the peak heat release rate (pkHRR) of the clay-based coating compared to that of the uncoated foam. This significant reduction in pkHRR and preservation of the porous structure of the foam highlights the utility of this easy-to-deposit, environmentally benign treatment to reduce the foam's flammability.