Within-Season Changes in Land-Use Impact Pest Abundance in Smallholder African Cassava Production Systems

Insects. 2021 Mar 22;12(3):269. doi: 10.3390/insects12030269.

Abstract

Cassava (Manihot esculenta Crantz), an important commercial and food security crop in East and Central Africa, continues to be adversely affected by the whitefly Bemisia tabaci. In Uganda, changes in smallholder farming landscapes due to crop rotations can impact pest populations but how these changes affect pest outbreak risk is unknown. We investigated how seasonal changes in land-use have affected B. tabaci population dynamics and its parasitoids. We used a large-scale field experiment to standardize the focal field in terms of cassava age and cultivar, then measured how Bemisia populations responded to surrounding land-use change. Bemisia tabaci Sub-Saharan Africa 1 (SSA1) was identified using molecular diagnostics as the most prevalent species and the same species was also found on surrounding soybean, groundnut, and sesame crops. We found that an increase in the area of cassava in the 3-7-month age range in the landscape resulted in an increase in the abundance of the B. tabaci SSA1 on cassava. There was a negative relationship between the extent of non-crop vegetation in the landscape and parasitism of nymphs suggesting that these parasitoids do not rely on resources in the non-crop patches. The highest abundance of B. tabaci SSA1 nymphs in cassava fields occurred at times when landscapes had large areas of weeds, low to moderate areas of maize, and low areas of banana. Our results can guide the development of land-use strategies that smallholder farmers can employ to manage these pests.

Keywords: Bemisia tabaci; ecosystem services; landscape change; pest abundance; temporal dynamics.