Model of Environmental Membrane Field for Transmembrane Proteins

Int J Mol Sci. 2021 Mar 31;22(7):3619. doi: 10.3390/ijms22073619.

Abstract

The water environment determines the activity of biological processes. The role of such an environment interpreted in the form of an external field expressed by the 3D Gaussian distribution in the fuzzy oil drop model directs the folding process towards the generation of a centrally located hydrophobic core with the simultaneous exposure of polar residues on the surface. In addition to proteins soluble in the water environment, there is a significant group of membrane proteins that act as receptors or channels, including ion channels in particular. The change of the polar (water) environment into a highly hydrophobic (membrane) environment is quite radical, resulting in a different hydrophobicity distribution within the membrane protein. Modification of the notation of the force field expressing the presence of the hydrophobic environment has been proposed in this work. A modified fuzzy oil drop model with its adaptation to membrane proteins was used to interpret the structure of membrane proteins-mechanosensitive channel. The modified model was also used to describe the so-called negative cases-i.e., for water-soluble proteins with a clear distribution consistent with the fuzzy oil drop model.

Keywords: hydrophobicity; ion channel; mechanosensitive channel; membrane; water/membrane environment.

MeSH terms

  • Cell Membrane / chemistry
  • Cell Membrane / metabolism*
  • Hydrophobic and Hydrophilic Interactions
  • Membrane Proteins / chemistry*
  • Membranes / chemistry
  • Membranes / metabolism
  • Models, Molecular
  • Protein Conformation
  • Protein Folding
  • Water / chemistry*

Substances

  • Membrane Proteins
  • Water