Biofilm-Forming Ability of Microbacterium lacticum and Staphylococcus capitis Considering Physicochemical and Topographical Surface Properties

Foods. 2021 Mar 13;10(3):611. doi: 10.3390/foods10030611.

Abstract

Biofilm characteristics of Microbacterium lacticum D84 (M. lacticum) and Staphylococcus capitis subsp. capitis (S. capitis) on polytetrafluoroethylene and AISI-304 stainless steel at early- (24, 48 h) and late-stage (144, 192 h) biofilm formation were investigated. M. lacticum biofilm structure was more developed compared to S. capitis, representing vastly mature biofilms with a strongly developed amorphous matrix, possibly extracellular polymeric substances (EPSs), at late-stage biofilm formation. S. capitis showed faster growth behavior but still resulted in a relatively flat biofilm structure. Strong correlations were found between several roughness parameters and S. capitis surface coverage (r ≥ 0.98), and between total surface free energy (γs) and S. capitis surface coverage (r = 0.89), while M. lacticum remained mostly unaffected. The pronounced ubiquitous biofilm characteristics make M. lacticum D84 a suitable model for biofilm research. Studying biofilm formation of these bacteria may help one understand bacterial adhesion on interfaces and hence reduce biofilm formation in the food industry.

Keywords: Microbacterium lacticum; biofilm; food contact surface; hygienic design; roughness; stainless steel.