Systematic Characterization of Nanostructured Lipid Carriers from Cetyl Palmitate/Caprylic Triglyceride/Tween 80 Mixtures in an Aqueous Environment

Langmuir. 2021 Apr 13;37(14):4284-4293. doi: 10.1021/acs.langmuir.1c00270. Epub 2021 Apr 2.

Abstract

Nanostructured lipid carriers (NLCs) are gaining attention as the new generation of lipid vehicles. These carriers consist of saturated lipids with small drops of liquid oil dispersed into the inner lipid matrix and are stabilized by a surfactant. Conventionally, NLC-based drug delivery systems have been widely studied, and many researchers are looking into the composition of NLC properties to improve the performance of NLCs. The membrane fluidity and polarity of self-assembling lipids are also essential properties that must be affected by membrane compositions; however, such fundamental characteristics have not been studied yet. In this study, NLCs were prepared from cetyl palmitate (CP), caprylic triglyceride (CaTG), and Tween 80 (T80). Structural properties, such as particle size and ζ-potential of the CP/CaTG/T80 ternary mixtures, were investigated. Then, the systematic characterization of self-assembly properties using fluorescence-based analysis was applied for the first time to the NLC system. As a final step, the ternary diagram was developed based on the self-assembly properties to summarize the possible structures formed at different compositions. The results showed four states: micelle-like, oil-in-water (O/W) emulsion-like, solid lipid nanoparticle-like, and intermediate (solid-liquid coexistence). For the purpose of making the lipid matrix more liquified, the heterogeneous state and the disordered state of the O/W emulsion-like structure might fulfill the criteria of NLCs. Finally, the ternary diagram provides new information about the assembly state of NLC constituents that could become an important reference for developing high-performance NLCs.

Publication types

  • Research Support, Non-U.S. Gov't